Find the area enclosed by

$$
\begin{aligned}
& r=1+\cos (\theta) \\
& r=\sin (2 \theta) \\
& r=a \cos (3 \theta)
\end{aligned}
$$

Find the slope of the line tangent to the polar curve

$$
r=a \tan \left(\frac{\theta}{2}\right) \text { at } \theta=\frac{\pi}{2}
$$

Find the area inside $r=\cos (\theta)$ And outside $r=1-\cos (\theta)$

Find the area common to

$$
r=\sin (3 \theta) \text { and } r=\cos (\theta)
$$

Find the length of the cardiod

$$
r=a(1-\cos (\theta))
$$

Find the area inside $\quad r=1+2 \cos (2 \theta)$

Determine the length of $\quad r=e^{-\theta}$
For $\theta \geq 0$

$$
r=2+\cos (\theta)
$$

Find all horizontal tangents

Find the area

Find the length

Find the area common to the two polar curves listed below

$$
\begin{aligned}
& r^{2}=1+2 \cos (2 \theta) \\
& r=1-\cos (2 \theta)
\end{aligned}
$$

Find the area enclosed by

$$
r=\sin (3 \theta)
$$

Find the surface area of the region formed by rotating it about the x -axis

Determine the area outside $r=\sin (\theta)$

And inside $\quad r=\cos (\theta)-1$

