Find the area enclosed by

 $r = 1 + \cos(\theta)$ $r = \sin(2\theta)$ $r = a\cos(3\theta)$

Find the slope of the line tangent to the polar curve

$$r = a \tan\left(\frac{\theta}{2}\right)$$
 at $\theta = \frac{\pi}{2}$

Find the area inside $r = \cos(\theta)$ And outside $r = 1 - \cos(\theta)$

Find the area common to

 $r = \sin(3\theta)$ and $r = \cos(\theta)$

Find the length of the cardiod

$$r = a \left(1 - \cos(\theta) \right)$$

Find the area inside $r = 1 + 2\cos(2\theta)$

Determine the length of
$$r = e^{-\theta}$$

For $\theta \ge 0$

 $r = 2 + \cos(\theta)$

Find all horizontal tangents

Find the area

Find the length

Find the area common to the two polar curves listed below

$$r^{2} = 1 + 2\cos(2\theta)$$
$$r = 1 - \cos(2\theta)$$

Find the area enclosed by $r = \sin(3\theta)$

Find the surface area of the region formed by rotating it about the x-axis Determine the area outside $r = \sin(\theta)$

And inside
$$r = \cos(\theta) - 1$$