Write the sixth degree Maclaurin Polynomial for

$$
f(x)=\sqrt{x+1}
$$

Then find an interval centered at
$\mathrm{X}=0$ so that

$$
\left|f(x)-P_{6}(x)\right|<0.01
$$

Find the MacLaurin Polynomial of degree 4 for

$$
y=e^{x^{2}}
$$

Write the sixth degree Taylor Polynomial to approximate

$$
y=\ln (x) \text { near } x=1
$$

Use your approximation to estimate $\ln (2)$

Use your calculator to estimate the error.

Write the sixth degree polynomial for $\cos (\mathrm{x})$ near zero.

Estimate the error if it is used to approximate $\cos (0.25)$

Write the fifth degree Taylor polynomial approximating e^{x} near zero

Use it to estimate \sqrt{e}

Use Taylor's theorem to estimate the error in your approximation.

Suppose we wanted to estimate e^{x} to five digit accuracy. What interval would we have to use?

What degree would be required to get 5 digit accuracy for \sqrt{e} ?

Write the third degree Maclaurin Polynomial for
$f(x)=\frac{2}{3}(x+1)^{\frac{3}{2}} \quad \begin{aligned} & \text { Then use the Taylor remainder } \\ & \text { theorem to find an interval }\end{aligned}$ centered at
$\mathrm{X}=0$ so that $\quad\left|f(x)-P_{3}(x)\right|<0.01$

If we wished to find $f(1.4)$ correct to ten decimal places, how many terms would we need?

