Find the area of the region between these two curves
$y=12-x^{2}$
$y=2 x^{2}$

Find the area of the region between these two curves

$$
y=2 x^{2}-10
$$

$$
y=x
$$

Greater Boston can be approximated by a semicircle of radius eight miles with its center on the coast. Moving away from the center along a radius, the population density is constant for the first mile. Beyond that, the density starts to decrease according the table given in the table, where $\rho(r)$, in thousands of people per mi^{2}, is the population density at a distance r miles from the center.

r	0	1	2	3	4	5	6	7	8
$\mathrm{P}(\mathrm{r})$	75	75	67.5	60	52.5	45	37.5	30	22.5

1. Using these data and a Riemann sum, estimate the total population living in the eight-mile radius.
2. Determine a possible formula for $\rho(r)$. Use this to make another estimate of the population.

The population of Boston is about 4.4 Million

Find the area between the curves

$$
y=e^{x} \text { and } y=x^{3}+3 x^{2}+2 x
$$

Find the length of the piece of the arctangent curve from $x=-1$ to

$$
x=1
$$

Find the volume generated when the region bounded by the x-axis and the curve $y=3 x-x^{2} \quad$ is rotated about the x-axis

Find the volume generated when the region bounded by the curves

$$
\begin{aligned}
& y=2 x^{2}-10 \\
& y=x
\end{aligned}
$$

Is rotated about the line $\quad x=-4$

Is rotated about the line $\quad y=-15$

Find the volume determined by rotating the region bounded above by the line $\mathrm{y}=9$ and below by the curve

$$
y=x^{2}
$$

About the x -axis

About the line $\mathrm{y}=12$

About the line $\mathrm{x}=12$

A closed region to the right of the y-axis is determined by
the y axis, the line $\quad y=\frac{1}{2}$

And the curve

$$
y=\cos (x)
$$

Find the volume of the solid determined by rotating this region about the x-axis and also the volume determined by rotating it about the y-axis

$y=2 x^{2}-10$

$y=x$

A solid is formed by constructing squares with bases in the $x-y$ plane, perpendicular to the plane, using the distance between the curves at each x value as the length of a side of the square. Find its volume.

REVIEW : Find equations of all lines tangent to the curve with equation $x^{2} y-y^{2} x+x y=4$ when $x=2$

Find the dimensions of the cylinder of largest volume that can be inscribed in a sphere with radius R

Gravel is being dumped form a conveyor belt at a rate of 30
cubic feet per minute. The gravel forms a pile that is conical in shape and has height equal to base diameter. Find the rate at which the height is increasing when the pile is ten feet high.

