$$
\int_{0}^{2} x^{2} d x
$$

Write approximations to the integral for n subdivisions using left sums, right sums, midpoint sums and trapezoidal sums.

$$
\int_{-3}^{-1}\left(x e^{x^{2}}\right) d x
$$

Arrange in order, smallest to largest
L20,T20,M20,R20

$$
\int_{2}^{6}(\ln (x)) d x
$$

Find $\quad L_{16}$ and $M_{16} \quad$ Estimate the error. Are the approximations too big or too small? How many terms are necessary for each to get the answer to within 0.0005 ?

$\int_{1}^{3}\left(\frac{1}{x}\right) d x$

Write the summation to approximate this integral using left sums, right sums, trapezoids and midpoints. In each case use 400 subintervals and estimate your error.

$\int_{-2}^{2}\left(e^{x^{2}}\right) d x$

Write the summation to approximate this integral using left sums, right sums, trapezoids and midpoints. In each case use 400 subintervals and estimate your error.

$\frac{d y}{d x}=x-y$

Determine y using Euler's method and 5 increments of 0.1 starting from $(1,0)$. Repeat the process starting from . $(2,0)$ Show steps

$\frac{d y}{d x}=x+y$
 $d x$

Determine y using Euler's method and 5 increments of 0.1 starting from $(1,0)$. Repeat the process starting from . $(2,2)$ Show steps

$\frac{d y}{d x}=x^{2}+y^{2}$

Estimate a solution to this differential equation using Euler's method and four steps, starting at $(0,0)$ and ending at $x=4$.

Then do it using 8 steps

Approximate $\int_{1}^{9}\left(\frac{100}{(x+1)^{2}}\right) d x$ using Simpson's rule and 32 subintervals. Estimate your error.

Find the area of the region between these two curves
$y=12-x^{2}$
$y=2 x^{2}$

Find the area of the region between these two curves

$$
y=2 x^{2}-10
$$

$$
y=x
$$

