$g(x)$ is a continuous odd function with domain $(-5,5)$
The derivative of g is positive on $[0,2]$ and nonpositive on $[2,5)$ $g^{\prime}(2)=0$ and $g^{\prime}(4)=0$
$g^{\prime \prime}(x)$ is positive on $(0,1),(3,4)$
Identify the x coordinates of all relative maxima and minima of g
Identify the x coordinates of all inflection points of g
Identify all intervals where g is increasing
Identify all intervals where g is concave down
Sketch a possible graph of g

Given the facts that $\quad g(x)=f^{\prime}(x)$ and that $\quad h(x)=g^{\prime}(x)$

 the graph of g, and the function values listed, you are to create graphs of f and h on the axes provided.$$
\begin{aligned}
& f(3)=1 \\
& f(2)=2 \\
& f(0)=3 \\
& f(-2)=2 \\
& f(-3)=1
\end{aligned}
$$

And now, a number of questions:

1) Where does f have a point of inflection?
2) What happens to g at your answer to \#1?
3) What happens to h at your answer to number 1 ?
4) Find an interval where g is increasing. What is happening to f on this interval? What is happening to h on this interval?
5) Find an interval where h has negative values. What is happening to g on this interval? What is happening to f on this interval?

Given $f^{\prime}(x)$ sketch the derivative of each of the following
a) $f(x)+2$
b) $f(x+2)$
c) $2 f(x)$
d) $f(2 x)$
e) $-f(-x)$
f is an odd periodic function.
It had period 10 .
It is continuous on the real numbers.
The only relative max f has on $(-5,5)$ is at $\mathrm{x}=4$

$$
f(-6)=2
$$

Make all possible conclusions that you can about f .
f is an odd periodic function.
It had period 10.
It is continuous on the real numbers.
The only relative max f has on $(-5,5)$ is at $x=3$

$$
f(-6)=2
$$

Make all possible conclusions that you can about f .

$f(5)=12,-2<f^{\prime}(x)<3$ for $x \in[0,10]$

If possible, determine bounds, upper and lower, for each of the following numbers. Justify your answer.

$$
\begin{aligned}
& f(8) \\
& f(3)
\end{aligned}
$$

The graph of the derivative of a function f is shown.

On what intervals is f increasing? On what intervals is f decreasing? What value of x will produce relative minimum values of f ?

What values of x will produce relative maximum values of f ?

What values of x will produce inflection points of f?

If $f(0)=3$, sketch f

The graph of the derivative of a function f is shown.

On what intervals is f increasing?

On what intervals is f decreasing?

What value of x will produce relative minimum values of f ?

What values of x will produce relative maximum values of f ?

What values of x will produce inflection points of f ?

If $f(0)=3$, sketch f

